Revista Brasileira de Sensoriamento Remoto

##plugins.themes.gdThemes.journalSlogan##

QUALIS-CAPES

B1

2021-2024
quadriênio

##plugins.themes.gdThemes.language##

Revista Brasileira de Sensoriamento Remoto

##plugins.themes.gdThemes.general.eIssn##: 2675-5491 | ##plugins.themes.gdThemes.general.issn##: 2675-5491


Resumen

DOI

O monitoramento preciso de corpos d’água é fundamental para a gestão de recursos hídricos e o desenvolvimento sustentável da aquicultura, especialmente em regiões semiáridas. Este estudo avaliou o desempenho de diferentes índices espectrais de água (NDWI, MNDWI, NWI, AWEIsh, AWEInsh e SWI) aplicados a imagens Landsat 8 OLI para a identificação automática de viveiros voltados à carcinicultura no município de Aracati, Ceará. A classificação binária dos índices espectrais, calculados a partir das bandas processadas no QGIS, foi realizada por meio do método de Otsu, aplicado de maneira independente às duas áreas de interesse: a cena completa e o recorte restrito aos viveiros aquícolas. O desempenho foi analisado tanto para uma cena maior, que inclui diferentes usos do solo, quanto para um recorte restrito à área dos viveiros. Os resultados evidenciaram que a utilização de áreas homogêneas favorece a segmentação espectral entre água e áreas secas, otimizando a aplicação de limiares automáticos. Entre os índices testados, o NWI apresentou o melhor desempenho na separação dos alvos, seguido por MNDWI e NDWI, enquanto índices subtrativos como AWEIsh, AWEInsh e SWI apresentaram limitações devido à sensibilidade a sombras e superfícies úmidas não aquáticas. A análise dos histogramas e estatísticas descritivas confirmou que ambientes mais homogêneos e índices com distribuição bimodal clara maximizam a eficácia do método de Otsu. O estudo destaca ainda a importância de abordagens adaptativas em áreas espectralmente complexas e recomenda o uso de séries temporais, imagens de maior resolução e técnicas de inteligência artificial em futuras pesquisas para aprimorar a acurácia do mapeamento aquícola e de recursos hídricos.

Citas

  • Bergsma, E. W., Klotz, A. N., Artigues, S., Graffin, M., Prenowitz, A., Delvit, J. M., & Almar, R. (2024). Shoreliner: A Sub-Pixel Coastal Waterline Extraction Pipeline for Multi-Spectral Satellite Optical Imagery. Remote Sensing, 16(15), 2795.
  • Bishop-Taylor, R., Sagar, S., Lymburner, L., Alam, I., & Sixsmith, J. (2019). Sub-pixel waterline extraction: Characterising accuracy and sensitivity to indices and spectra. Remote Sensing, 11(24), 2984.
  • Bungenstock, F., Irion, G., Machalett, B., de Souza Pinheiro, L., Wolters, S., & de Morais, J. O. (2023). Change of sediment transport direction within the Rio Jaguaribe estuary, NE Brazil, by means of clay mineralogical analyses. Estuarine, Coastal and Shelf Science, 287, 108323.
  • Cavalcante, M. S., Marins, R. V., da Silva Dias, F. J., & de Rezende, C. E. (2021). Assessment of carbon fluxes to coastal area during persistent drought conditions. Regional Studies in Marine Science, 47, 101934.
  • Chang, L., Cheng, L., Huang, C., Qin, S., Fu, C., & Li, S. (2022). Extracting urban water bodies from Landsat imagery based on mNDWI and HSV transformation. Remote Sensing, 14(22), 5785.
  • Cotovicz Jr, L. C., Marins, R. V., & da Silva, A. R. F. (2022). Eutrophication amplifies the diel variability of carbonate chemistry in an equatorial, semi-arid, and negative estuary. Frontiers in Marine Science, 9, 767632.
  • Dias, F. D. S., Marins, R. V., & Maia, L. P. (2009). Hydrology of a well-mixed estuary at the semi-arid Northeastern Brazilian coast. Acta Limnologica Brasiliensia, 21(4), 377-385.
  • Diniz, C., Cortinhas, L., Pinheiro, M. L., Sadeck, L., Fernandes Filho, A., Baumann, L. R., ... & Souza-Filho, P. W. M. (2021). A large-scale deep-learning approach for multi-temporal aqua and salt-culture mapping. Remote Sensing, 13(8), 1415.
  • Edwards, P., Zhang, W., Belton, B., & Little, D. C. (2019). Misunderstandings, myths and mantras in aquaculture: Its contribution to world food supplies has been systematically over reported. Marine Policy, 106, 103547.
  • FAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.
  • Feng, D. (2009). A new method for fast information extraction of water bodies using remotely sensed data. Remote Sensing Technology and Application, 24(2), 167-171.
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote sensing of environment, 140, 23-35.
  • Gameiro, S., Nascimento, V., Facco, D., Sfredo, G., & Ometto, J. (2022). Multitemporal Spatial Analysis of Land Use and Land Cover Changes in the Lower Jaguaribe Hydrographic Sub-Basin, Ceará, Northeast Brazil. Land, 11(1), 103.
  • Giri, S., Samanta, S., Mondal, P. P., Basu, O., Khorat, S., Chanda, A., & Hazra, S. (2022). A geospatial assessment of growth pattern of aquaculture in the Indian Sundarbans Biosphere Reserve. Environment, Development and Sustainability, 24(3), 4203-4225.
  • Gumma, M. K., Amede, T., Getnet, M., Pinjarla, B., Panjala, P., Legesse, G., Whitbread, A. M. (2022). Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia. Renewable Agriculture and Food Systems, 37(S1), S28-S42.
  • Herndon, K., Muench, R., Cherrington, E., & Griffin, R. (2020). An assessment of surface water detection methods for water resource management in the Nigerien Sahel. Sensors, 20(2), 431.
  • Islam, M. A., Thenkabail, P. S., Kulawardhana, R. W., Alankara, R., Gunasinghe, S., Edussriya, C., & Gunawardana, A. (2008). Semi‐automated methods for mapping wetlands using Landsat ETM+ and SRTM data. International Journal of Remote Sensing, 29(24), 7077-7106.
  • Jiang, W., Ni, Y., Pang, Z., Li, X., Ju, H., He, G., Qin, X. (2021). An effective water body extraction method with new water index for sentinel-2 imagery. Water, 13(12), 1647.
  • Kolli, M. K., Opp, C., Karthe, D., & Pradhan, B. (2022). Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine–the case study of Kolleru Lake, South India. Geocarto International, 37(26), 11173-11189.
  • Kurekin, A. A., Miller, P. I., Avillanosa, A. L., & Sumeldan, J. D. (2022). Monitoring of coastal aquaculture sites in the Philippines through automated time series analysis of Sentinel-1 SAR images. Remote Sensing, 14(12), 2862.
  • Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., & Lafaye, M. (2007). Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote sensing of environment, 106(1), 66-74.
  • Lacerda, L. D., Ward, R. D., Godoy, M. D. P., de Andrade Meireles, A. J., Borges, R., & Ferreira, A. C. (2021). 20-years cumulative impact from shrimp farming on mangroves of Northeast Brazil. Frontiers in Forests and Global Change, 4, 653096.
  • Li, B., Liu, K., Wang, M., Wang, Y., He, Q., Zhuang, L., & Zhu, W. (2023). High-spatiotemporal-resolution dynamic water monitoring using LightGBM model and Sentinel-2 MSI data. International Journal of Applied Earth Observation and Geoinformation, 118, 103278.
  • Liu, S., Wu, Y., Zhang, G., Lin, N., & Liu, Z. (2023). Comparing water indices for landsat data for automated surface water body extraction under complex ground background: a case study in Jilin Province. Remote Sensing, 15(6), 1678.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Peng, Y., Sengupta, D., Duan, Y., Chen, C., & Tian, B. (2022). Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images. Marine Pollution Bulletin, 181, 113901.
  • Prasad, K. A., Ottinger, M., Wei, C., & Leinenkugel, P. (2019). Assessment of coastal aquaculture for India from Sentinel-1 SAR time series. Remote sensing, 11(3), 357.
  • Rad, A. M., Kreitler, J., & Sadegh, M. (2021). Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, 140, 105030.
  • Shiklomanov, A. N., Bradley, B. A., Dahlin, K. M., M Fox, A., Gough, C. M., Hoffman, F. M., ... & Smith, W. K. (2019). Enhancing global change experiments through integration of remote‐sensing techniques. Frontiers in Ecology and the Environment, 17(4), 215-224.
  • Wang, M., Mao, D., Xiao, X., Song, K., Jia, M., Ren, C., & Wang, Z. (2023). Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sensing of Environment, 284, 113347.
  • Wang, Q., Zhang, Z., Hao, Z., Liu, B., & Xiong, J. (2021). Optical classification of coastal water body in China using hyperspectral imagery CHRIS/PROBA. In IOP Conference Series: Earth and Environmental Science (Vol. 668, No. 1, p. 012017). IOP Publishing.
  • Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., ... & Li, B. (2020). Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 312-326.
  • Ximenes, L. F., & de Fatima Vidal, M. (2023). PISCICULTURA. Caderno Setorial ETENE, 272(8).
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033.
  • Xu, X., Xu, S., Jin, L., & Song, E. (2011). Characteristic analysis of Otsu threshold and its applications. Pattern recognition letters, 32(7), 956-961.