Revista Brasileira de Sensoriamento Remoto

##plugins.themes.gdThemes.journalSlogan##

QUALIS-CAPES

B1

2021-2024
quadriênio

##plugins.themes.gdThemes.language##

Revista Brasileira de Sensoriamento Remoto

##plugins.themes.gdThemes.general.eIssn##: 2675-5491 | ##plugins.themes.gdThemes.general.issn##: 2675-5491


Resumen

DOI

O monitoramento das florestas de manguezais é essencial para uma compreensão mais aprofundada do cenário ecológico e da necessidade de conservação desses ecossistemas. Utilizando imagens de satélite de acesso livre, como as do sensor Landsat 8, esta pesquisa buscou mapear a extensão das florestas de manguezais em uma resolução de 30 metros no estuário do rio Macuse localizado no centro de Mocambique. O diferencial deste estudo está no uso de diferentes índices espectrais, como o NDVI, NDWI e o mais recente índice de vegetação de manguezais, o MVI (Mangrove Vegetation Index). Essa abordagem possibilitou através da classificação supervisionada random forest, a separação eficiente da vegetação de manguezais em relação a outras classes de cobertura do solo, alcançando uma precisão notável de 95%, conforme indicado pelo coeficiente kappa.

Citas

  • Baloloy, A. B., Blanco, A. C., Sta. Ana, R. R. C., Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 95–117. https://doi:10.1016/j.isprsjprs.2020.06.001
  • Barbosa, F. M.A., C. C. Cuambe, and S. O. Bandeira. 2001. “Status and Distribution of Mangroves in Mozambique.” South African Journal of Botany 67 (3): 393–98. https://doi.org/10.1016/S0254-6299(15)31155-8
  • Bunting P., Rosenqvist A., Lucas R., Rebelo L-M., Hilarides L., Thomas N., Hardy A., Itoh T., Shimada M. and Finlayson C.M. (2018). The Global Mangrove Watch – a New 2010 Global Baseline of Mangrove Extent. Remote Sensing 10(10): 1669. https://doi:10.3390/rs1010669.
  • Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., ... & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104-120.
  • FAO (2005). “Global Forest Resources Assessment 2005: Thematic Study on Mangroves. Mozambique Country Profile.” Rome: Forest Resources Development Service, Forest Resources Division Forestry, Forestry Department. Food and Agriculture Organization of the United Nations.
  • Fatoyinbo, T.E., Simard, M., 2013. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 34, 668–681.
  • Furaca, N. B., Hoguane, A. M., Mackay, F., Willemse, M., eLanga, A. A. (2021). Exploring urbanization and critical habitat loss through land cover change around the Bons Sinais Estuary, Mozambique. Western Indian Ocean Journal of Marine Science, (1/2021), 43-58.
  • Giri. C., Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011). Status and distribution of mangrove forests of the world using earth observation satellite data (version 1.4, updated by UNEP-WCMC). Global Ecology and Biogeography 20: 154- 159. Paper https://10.1111/j.1466-8238.2010.00584.x
  • Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Majumdar, S.D.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. (2018). An Index for Discrimination of Mangroves from Non-Mangroves Using LANDSAT 8 OLI Imagery. MethodsX, 5, 1129–1139.
  • Mcfeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v. 17, n. 7, p. 1425-1432.
  • Moxon, Sayana de gorostizaga (2021). Mapping mangrove forests: processing and visualization of multi-sensor earth observation data for the Colombian pacific coast. PhD Thesis. Palacký University Olomouc.
  • Pesaresi, S., Mancini, A., Quattrini, G., & Casavecchia, S. (2024). Evaluation and Selection of Multi-Spectral Indices to Classify Vegetation Using Multivariate Functional Principal Component Analysis. Remote Sensing, 16(7), 1224.
  • Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Earth Resources Tecnology Satellite- 1 Symposium,3, 1973. Proceedings. Washington, v.1, Sec. A, p. 309-317.
  • Shapiro, Aurélie. 2018. “Mozambique Mangrove Extent 1995-Present.” Berlin, Germany: WWF Germany. https://doi.org/10.13140/RG.2.2.18470.55367.
  • Toosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662.
  • Tran, Thuong V., Ruth Reef, and Xuan Zhu. (2022). A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sensing 14, no. 19: 4868. https://doi.org/10.3390/rs14194868